

Technical Article

Overview of Windows Embedded Versions

Summary: Original Equipment Manufacturers (OEMs) have several embedded options, and they may be

unsure of which version of Windows Embedded best meets their needs. To help guide OEMs in their

selection process, we have created this introductory guide to Windows Embedded. In this document, we

discuss the various versions of Windows Embedded. We also describe their features, provide

comparative scenarios, and discuss approaches to prototyping.

Published: October 2015

Applies to: All currently supported Windows Embedded operating systems

(c) 2016 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

and views expressed in this document, including URL and other Internet Web site references, may

change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

2

Table of Contents

Overview ... 5

In Scope ... 5

Out of Scope .. 5

Windows CE/Windows Embedded Compact .. 5

Windows Embedded Handheld .. 6

.NET Micro Framework ... 6

Windows NT Embedded.. 6

Windows ‘For Embedded Systems’ ... 6

Windows Embedded Versions .. 6

Windows XP-Based OS .. 7

Windows XP Embedded (XPe)/Windows Embedded Standard 2009 ... 8

Windows Embedded Point of Service/POSReady 2009 .. 8

Windows 7-Based OS .. 9

Windows Embedded Standard 7 .. 9

Windows Embedded POSReady 7 ... 9

Windows Thin-PC .. 10

Windows 8/8.1-Based OS ... 10

Windows Embedded 8 Standard .. 10

Windows Embedded 8/8.1 Industry ... 10

Windows 10-Based OS .. 10

Windows 10 Enterprise/Windows 10 IoT Enterprise .. 11

Windows 10 IoT Core .. 11

For Embedded Systems ... 11

Purchasing and Licensing .. 12

Support Lifecycle ... 12

Windows Embedded Enabling Features ... 13

Write Filters .. 13

Enhanced Write Filter ... 14

EWF-RAM for Read-Only Systems ... 15

EWF-HORM for Quicker Boot .. 16

EWF API ... 17

File-Based Write Filter... 17

3

Common FBWF Scenarios ... 17

FBWF API ... 17

Unified Write Filter ... 18

Common Usage and Design Considerations ... 18

Unified Write Filter WMI Provider Reference... 18

Registry Filter .. 18

Shell Launcher ... 19

Keyboard Filter .. 20

Gesture Filter .. 20

USB Filter ... 21

Embedded Lockdown Manager .. 21

Assigned Access .. 22

Windows 8 Application Launcher ... 22

AppLocker ... 22

Common Usage Scenarios .. 22

Kiosk Device .. 22

Gaming .. 23

Medical.. 23

Military .. 24

Space or Extremely Remote Locations ... 24

Thin Client Terminals .. 24

Point of Sale Terminals ... 25

Embedded System Prototyping and Development... 25

Hardware Validation ... 25

Virtual Machines ... 26

HDD vs. SSD Performance Considerations .. 26

Third-Party Drivers .. 27

Third-Party Applications ... 27

Alternative Shell Development ... 27

Debugging and Capturing System Dumps ... 29

WinDbg.. 29

Process Dump ... 29

Crash Dumps ... 30

Visual Studio .. 32

Troubleshooting .. 32

4

Common Windows Embedded Issues ... 32

Process Monitor .. 33

System Updates (WU, WSUS, WEDU, SCCM) ... 33

Windows Update (WU) ... 34

Windows Server Update Service (WSUS) .. 34

System Center Configuration Manager (SCCM) .. 35

Windows Embedded Developer Update (WEDU) ... 35

Resources .. 35

Microsoft Developer Support ... 35

Training ... 36

Documentation ... 36

Conclusion ... 36

5

Overview
Microsoft’s Windows Embedded family of operating systems, tools, and services help enterprises
leverage customized intelligent system solutions to gather, store, and process data. All the Windows
Embedded versions we will be discussing in this paper are either fully equivalent or a subset of the
functionality that shipped in the desktop version of the OS. Therefore, your current knowledge of
Windows XP, Windows 7, or Windows 8/8.1 will continue to be of use.

An OEM is an individual or company that selects one of the products mentioned in this paper. The OEM
customizes and configures a unique software image based on that product. Then the OEM combines
that image with hardware to produce a task-specific or industry-specific solution that is sold to
customers. The OEM must have a license with Microsoft for each product and pay a run-time license fee
for each device sold to its customers.

In Scope

In this document, we will discuss the following:

 All the currently supported versions of Windows Embedded.

 Embedded Enabling Features (EEFs) or Lockdown functionalities.

 Comparative scenarios.

 Approaches to consider when beginning to prototype and develop your own embedded system
design.

 Common usage scenarios for a few categories of devices.

 Features that can be of benefit in each usage scenario.

Out of Scope

This paper is not a replacement for any existing product documentation or training that is currently
available on MSDN for Windows Embedded. The top-level documentation that discusses all of Windows
Embedded can be found at http://go.microsoft.com/fwlink/?LinkID=665697.

We will not discuss the following forms of Windows Embedded in depth:

 Windows CE/Windows Embedded Compact.

 .NET Micro Framework.

 Windows 10.

 Windows NT Embedded.

 Windows for Embedded Systems.

In the following sections, we provide brief descriptions of these technologies so that you are aware they
exist and know when they are used.

Windows CE/Windows Embedded Compact

For those not familiar with it, Windows CE or as it’s now known Windows Embedded Compact (now
shipping as Windows Embedded Compact 7 and Windows Embedded Compact 2013) is a
componentized, real-time operating system. It is designed for small footprint devices at the edge of
enterprise networks, and it is supported on x86 and ARM architectures. To learn more, go to
http://go.microsoft.com/fwlink/?LinkId=669699.

http://go.microsoft.com/fwlink/?LinkID=665697
http://go.microsoft.com/fwlink/?LinkId=669699

6

Windows Embedded Handheld

This is a product that is based on a version of Windows Mobile or Windows Phone. It generally includes
Bar-Code Scanner support and other hardware, such as Mag-Stripe readers. The devices are usually
more ruggedized than a standard Windows phone and are geared towards use in retail, industrial, and
warehouse environments. To learn more, go to
http://go.microsoft.com/fwlink/?LinkID=671702&clcid=0x409.

.NET Micro Framework

The .NET Micro Framework is designed to take up even less space than the Windows CE/WEC operating
systems. The .NET Micro Framework can even run where no operating system is present. For new
information on its current development, please go to the blog located at
http://go.microsoft.com/fwlink/?LinkID=671704&clcid=0x409.

The previous version of the framework is currently released as-is, and you can find discussions about it
by going to the page at http://go.microsoft.com/fwlink/?LinkId=671705.

Windows NT Embedded

There was an early, released version of Windows Embedded that was based on Windows NT. However,
because support for that product has reached end of life, we will not discuss it here.

Windows ‘For Embedded Systems’

Later, we will briefly discuss server and desktop versions that are marked as ‘For Embedded Systems’
(FES) with regard to Windows Embedded.

Windows Embedded Versions
In this section, we describe each of the Windows Embedded versions that have been released. We also
identify the original desktop operating system on which they are based. For most of these, you will see
that there are generally two categories of product that have been released.

Windows Embedded Standard (WES)/XP Embedded – These versions are designed to provide a very
high level of componentization. This allows you to pick exactly the components that your application or
device might require and leave out everything else. This means that you can build a very small image or
build an image that is almost the same size as a desktop installation. With the exception of Windows
Embedded 8 Standard, images built on these products generally do not require any form of activation.
These products also included a variety of EEFs and Lockdown features that we will discuss later.

POSReady/Windows Embedded 8.1 Industry/Windows Embedded for Point of Service (WePOS 1.1) –
These versions are generally based on the nearly complete version of the desktop equivalent. They are
not as configurable as the WES versions. Often, they include a subset of EEFs or Lockdown features.
They are generally intended to be used on Point of Service (POS) devices, such as a cash register in a
retail store.

Important These embedded versions of Windows are not intended to serve as a full replacement for the
desktop versions of the OS. Often, the runtime license or End-User License Agreement (EULA) prohibits
users from running certain applications locally on a Windows Embedded device. These might include
things like Microsoft Office or Visual Studio. Please review the EULA and licensing terms specific to the
version you plan to use before deployment.

http://go.microsoft.com/fwlink/?LinkID=671702&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=671704&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=671705

7

Table 1 identifies the base OS on which the embedded version is based.

BASE OS VERSION WES VERSION POSREADY VERSION

WINDOWS XP PRO Windows XP Embedded Windows Embedded POSReady 1.1

WINDOWS XP PRO Windows Embedded Standard
2009

Windows Embedded POSReady 2009

WINDOWS 7 PRO/ENT Windows Embedded Standard
7

Windows Embedded POSReady 7

WINDOWS 8 PRO/ENT Windows Embedded 8
Standard*

Windows Embedded 8 Industry*

WINDOWS 8.1 PRO/ENT N/A Windows Embedded 8.1 Industry*

WINDOWS 10 ENT N/A Windows 10 Enterprise / Windows 10
IoT Enterprise

Table 1: Base OS for Windows Embedded OSs

*These versions require runtime activation.

Windows XP-Based OS

There are currently four released products that are supported and all are based on Windows XP
Professional. Two of the original versions were based on Windows XP Service Pack 1 (SP1) or Service
Pack 2 (SP2). They were known as Windows XP Embedded and Windows Embedded for Point of Service.

These two products were very popular. However, upgrading them fully to Service Pack 3 would be
complex. Therefore, the product team decided to release two new products in 2009. These new versions
were known as Windows Embedded Standard 2009 and Windows Embedded POSReady 2009. Both
were based on Windows XP Service Pack 3 (SP3). Because they were new products, they had the
advantage of starting a new support lifecycle.

“Microsoft has ended support for Windows XP, correct?” Yes. Microsoft did end support for Windows
XP as a desktop OS on April 8, 2014. All of these XP-based embedded versions no longer receive
mainstream support. However, they continue to receive extended support. Extended support means
that they will continue to get security updates provided to them.

Windows XP Embedded will no longer receive extended support as of January 12, 2016. WePOS 1.1 will
lose extended support on April 12, 2016. Images based on WES 2009 will continue to receive extended
support until January 9, 2019. POSReady 2009 will receive extended support until April 9, 2019.

Important If you have created a product, you can continue to ship and use licenses for a product for five
(5) years after extended support ends. However, your products will no longer receive any security
updates. Therefore, they will continue to become less secure and more vulnerable to attacks over time.

Support for SATA drives was not included (inbox) with Windows XP-based embedded OSs. Therefore,
you must have a third-party SATA driver available for use at installation (added to the image for WES).
Alternatively, you can install the OS on an older, IDE/ATA-based HDD. If you need to use the SATA driver,
have it available on a floppy disk, especially for WePOS 1.1 or POSReady 2009-based products.

8

While an OEM-only version of Windows XP for 64-bit was released, these Windows XP Embedded
products are all 32-bit for x86 only. The minimum requirements were 128 MB of storage and 256 MB of
RAM.

Windows XP Embedded (XPe)/Windows Embedded Standard 2009

Both of these versions allow you to create a very small OS image. The image can be as small as 50 to 100
MB in size for a headless system with only kernel and networking support. If you included almost every
component, the image would still not be much more than 700 MB in size. By today’s standards, that is
still quite small.

These products shipped with a tool called Target Designer. Target Designer allowed you to build a
custom image based on almost 1,000 operating system components and over 9,000 unique device
drivers. The components were stored and referenced in what was known as a repository. A local
installation of Microsoft SQL Server Express managed this repository. The system requirements only
mention XP Pro SP2 or Vista. However, we have verified that you can also install and use these tools on
Windows 7 and Windows 8.1. Depending on the desktop version you installed the tools on, you might
have needed one of the following versions of SQL Server Express:

 For Windows XP - SQL Server Express 2005.

 For Windows 7 - SQL Server Express 2008.

 For Windows 8/8.1 - SQL Server Express 2012.

If you are considering developing on either of these products, we recommend using Windows
Embedded Standard 2009 because of its longer support lifecycle. You may have an existing deployment
of XP Embedded images that have not been upgraded from SP2. If that is the case, then we strongly
urge you to upgrade them to SP3. The upgrade would at least provide you with one more year of
support because images based on SP2 are no longer supported.

Consider starting a new design based on WES 2009 only if you have determined that your hardware
cannot perform adequately when running a newer OS version (such as Windows Embedded 7). Also
consider WES 2009 if you are physically limited in the amount of storage or RAM on the system. For
example, you have a storage device that only supports 1 or 2 GB of storage or it only has 256 or 512 MB
of RAM.

Because of the overall architectural improvements, we generally advise that you use embedded OSs
based on Windows 7 or Windows 8/8.1 instead. They provide better security and functionality and will
continue to be supported for a longer timeframe. These newer versions offer support for the Enhanced
Write Filter (EWF), the File Based Write Filter (FBWF), and the Registry Filter. We will discuss these in
greater detail in the Windows Embedded Enabling Features section.

Windows Embedded Point of Service/POSReady 2009

These versions are ideally suited to customers who want to run a sales application for a cash register.
They are also well suited for use as thin-clients that primarily use the remote desktop application to
connect to servers to run remote applications.

Their installation requires a setup wizard that is similar to the one used when deploying the desktop
version of Windows XP. However, you can also use a script to make the embedded installation setup
wizard deploy using an unattended.xml answer file.

The File Based Write Filter and the Registry Filter are available on these systems for disk protection.
These services will normally be on (running) by default. However, unless you specifically enable and

9

select a partition to protect, they should not affect anything in the system. If you will not be using them
with your design, we recommend that you disable those services to avoid any potential problems. You
learn how to disable them later in the Troubleshooting section.

If you are considering a new deployment, consider using POSReady 2009 instead of WePOS 1.1. Again,
consider starting a new design based on POSReady 2009 only if you have determined that your
hardware cannot perform adequately when running a newer OS version (such as Windows Embedded
7). Also consider POSReady 2009 if you are physically limited in the amount of HDD storage or RAM on
the system.

Windows 7-Based OS

These products are based on Windows 7 and were released one to two years after the desktop version
was launched. The two general versions are known as Windows Embedded Standard 7 (WES 7) and
Windows Embedded POSReady 7. Each version allows the selection of features based on Windows 7
Professional or Windows 7 Enterprise. The run-time licensing cost per device depends on the set of
features you select.

Windows Embedded Standard 7

This version is the componentized version that allows you to include only the components that are
needed for your device to function. You can create images that take up as little as 500 MBs, but not
much functionality is available at that image size. If you need UI support, then your image will probably
be 1 to 2 GB in size. If you want Aero Glass support (the UI look introduced with Windows Vista), then
the image size increases to 3.5 GB.

While you can still choose the features you want to include, this version is slightly less granular than its
XP-based predecessors. Instead of approximately 1,000 individual OS components, you have
approximately 150 different feature packages to select from to build your image. Instead of 9,000
individual driver components, there are now around 500 driver packages. The tool that you use to
configure your image for deployment is no longer called Target Designer. It is now called Image
Configuration Editor (ICE). The component packages are now stored in a folder called a distribution
share. No SQL Express or repositories are needed for management of these packages.

WES 7 continues to offer the Enhanced Write Filter and the File Based Write Filter for disk protection.
Additionally, there have been some improvements to USB Boot, Custom shells support, and Notification
and Popup suppression features.

Windows Embedded POSReady 7

This version is much closer to the desktop version of Windows 7 Enterprise or Professional in the
functionality that it provides. Because of this, the minimum suggested hardware is a bit more than it is
for a WES 7 image. For x86, we suggest a minimum of 1 GB of RAM and 16 GB of free disk space. For
x64, you will need 2 GB of RAM and 20 GB of available disk space.

Beyond the base installation, there are approximately 50 other packages that you can add to an image
using DISM as needed. To read the list of what is available, go to
http://go.microsoft.com/fwlink/?LinkId=671706.

EWF and FBWF are available for disk protection. However, for POSReady devices, it is more common to
see them using FBWF when running on a single partition. Additional out-of-band (OOB) updates are
available for POSReady 7 Volume License customers from the following site:
http://go.microsoft.com/fwlink/?LinkId=671707.

http://go.microsoft.com/fwlink/?LinkId=671706
http://go.microsoft.com/fwlink/?LinkId=671707

10

Windows Thin-PC

This is mentioned here because it is a specific, static image that Microsoft created for use on Thin Client
devices. It was based on Windows Embedded Standard 7. This OS includes the File Based Write Filter
and Registry Filter components if customers choose to enable them. Windows Thin-PC is an OS that an
enterprise would license directly from Microsoft for use on their existing hardware systems. Learn more
by going to the page at http://go.microsoft.com/fwlink/?LinkId=671710.

Windows 8/8.1-Based OS

These products are based on Windows 8 or Windows 8.1. The two main embedded versions we will
discuss are Windows Embedded 8 Standard and Windows Embedded 8.1 Industry.

Windows Embedded 8 Standard

This product works in a similar fashion as WES 7. You can configure your own custom image based on
around 150 feature packages. The Image Configuration Editor is still there to help you create and
configure that image. There were some improvements to ICE that help make building an image for
deployment and placing it onto a USB drive simpler. For x86, we suggest a minimum of 1GB of RAM and
a minimum of 3 GB of available disk space. For x64, you will need 2 GB of RAM and a minimum of 6 GB
of free disk space.

This version supports running Windows Modern Apps using enterprise side-loading. However, the
Microsoft Store application is not available, so users cannot purchase third-party applications using that
mechanism. Windows Embedded 8 Standard includes a number of new UI paradigms to better support
touch screen devices and new form factors such as tablets.

In addition to still offering EWF and FBWF, this version introduced a new write filter called Unified Write
Filter (UWF). A new tool called the Embedded Lockdown Manager (ELM) was also introduced. ELM
makes enabling and configuring the embedded features on a deployed image easier.

No update or new release to include 8.1 support is planned for this version. Windows Embedded 8
Standard continues to receive functional and security updates as defined on the product lifecycle site.

Windows Embedded 8/8.1 Industry

These embedded versions are actually a superset of the desktop versions. This means that they include
everything that the Professional or Enterprise products do, but they also include all Lockdown features.
Even though the name is different, these should be thought of as POSReady versions. The system
requirements for 8.1 Industry are the same as those for the desktop Enterprise or Professional editions.

This version no longer includes EWF or FBWF as write filters, but UWF is present. Additionally, some new
Lockdown features have been added, including Gesture Filter and USB Filter.

A version called Windows Embedded 8 Industry did ship, but support for that version will end on
January 12, 2016. All customers currently have 24 months from when that product was released (June
24, 2013) to move to the 8.1 version in order to remain fully supported by Microsoft. To move to 8.1,
you must perform a new installation of the image. Unfortunately, it is not possible to perform an in-
place upgrade of existing 8 Industry images.

Windows 10-Based OS

These products are based on Windows 10. There are two versions that we will discuss: Windows 10
Enterprise and Windows 10 IoT Core.

http://go.microsoft.com/fwlink/?LinkId=671710
http://go.microsoft.com/fwlink/?LinkId=671712

11

Windows 10 Enterprise/Windows 10 IoT Enterprise

At this point, there is no longer a difference between the desktop and embedded binaries that ship with
the product. The lockdown features that are available for Windows 10 are present as an optional
Windows Component that can be enabled. To turn them on or check the status, go to Programs and
Features and select Turn Windows Features On or Off. The following lockdown features will be
available:

 Embedded Boot Experience.

 Embedded Logon.

 Embedded Shell Launcher.

 Unified Write Filter.

There is no difference between the binaries that ship in Windows 10 IoT Enterprise and those that ship
in Windows 10 Enterprise. The difference in the titles indicates a difference in the license terms about
how they can be used. For more information on the system requirements, go to
http://go.microsoft.com/fwlink/?LinkId=671720.

Windows 10 IoT Core

This is a new product that Microsoft has introduced as part of the release of Windows 10. It is based on
something called “OneCore” and runs the same kernel that is present on the desktop OS. However, this
OS is fairly limited with regard to the services and features that are present or can be added to its image.
The footprint it requires is around 2 GB of storage. It currently runs on the Intel-based Minnow Board
Max and the ARM-based Raspberry Pi 2.

Developers can run C/C++ console apps or background tasks. They also have the ability to develop and
run Universal Windows Apps on this OS. Currently, only one UWP App can run at a time on the device.
To learn more about this and see some sample projects, please go to

http://go.microsoft.com/fwlink/?LinkId=671721.

For Embedded Systems

This category is mentioned here because it includes the word “embedded” in the title. These products
are exactly the same as the desktop or server versions. They are only different in how they can be used
based on license restrictions defined in the EULA that is specific to industry scenarios. They are generally
known as FES editions. FES versions do not contain any of the EEFs or Lockdown features found in the
other embedded versions previously mentioned.

Some of the products names in this category include:

 Windows XP Professional for Embedded Systems.

 Windows 7 Professional for Embedded Systems.

 Windows 7 Ultimate for Embedded Systems.

 Windows Embedded 8.1 Professional.

 Windows Embedded 8.1 Enterprise.

 Windows Server 2008 for Embedded Systems.

 Windows Server 2012 R2 for Embedded Systems.

 Microsoft SQL Server 2014 for Embedded Systems.

http://go.microsoft.com/fwlink/?LinkId=671716
http://go.microsoft.com/fwlink/?LinkId=671717
http://go.microsoft.com/fwlink/?LinkId=671718
http://go.microsoft.com/fwlink/?LinkId=671719
http://go.microsoft.com/fwlink/?LinkId=671720
http://go.microsoft.com/fwlink/?LinkId=671721

12

Purchasing and Licensing

OEMs who plan to develop systems will need to work with a distributor in their area. For someone in the
United States, read the information on the page at http://go.microsoft.com/fwlink/?LinkID=671723. A
distributor is a company that sells the embedded development tools and the packs of run-time licenses.
This model for OEMs has operated in the same way since Windows XP Embedded. The same model
exists for Windows Embedded 8 Standard and the POSReady versions as well.

With the exception of Windows 8/8.1-based products, images that were licensed only required a
product ID (PID). They did not require activation as part of the deployment process. However, WE8S/8.1
Industry now require activation like the desktop versions. The volume license editions of POSReady 7
also require activation.

Enterprises may have an interest in using some of the embedded versions in their environment. Now,
they can also purchase Volume Licensed-versions as upgrades to existing systems directly from
Microsoft. For additional details on what versions are available, review the “Enterprise Volume Licensing
FAQ” at http://go.microsoft.com/fwlink/?LinkId=690206.

Support Lifecycle

In most cases, when Microsoft releases a product, it establishes a support lifecycle of 10 years. For the
first five years, the product is in what is called mainstream support. This means that, if a customer
identifies a problem or bug with some functional aspect of the product, they can request a fix for it.
They must, however, provide a sufficient business impact case. A quick fix engineering (QFE) solution or
Hotfix would then be released to address the reported issue.

After the product exits mainstream support, it enters what is known as extended support. Issues related
to functionality will no longer be considered, but Microsoft will address any new, security-related issue
and release security updates. A customer may want to continue receiving functionality fixes for a
product after mainstream support ends. To do so, the customer must purchase the appropriate tier of
Custom Support Agreement (CSA) from Microsoft before mainstream support ends. The customer must
then continue to renew the CSA each year to maintain that agreement.

For easy reference, Table 2 contains the end dates for extended support for the products in this paper.
Note that the date format is Month/Day/Year.

Version Extended Support Ends

Windows XP Embedded (all versions) 1/12/2016

Windows Embedded for Point of Service 1.x 4/12/2016

Windows Embedded Standard 2009 1/8/2019

Windows Embedded POSReady 2009 4/9/2019

Windows Embedded Standard 7 10/13/2020

Windows Embedded POSReady 7 10/12/2021

Windows Embedded 8 Standard 7/11/2023

Windows Embedded 8.1 Industry 7/11/2023

Windows 10 Enterprise 10/14/2025

http://go.microsoft.com/fwlink/?LinkID=671723
http://go.microsoft.com/fwlink/?LinkId=690206

13

Table 2: Extended Support End Dates

For a complete list that shows when the embedded products were released and when they lose
extended support, go to http://go.microsoft.com/fwlink/?LinkId=671725.

Windows Embedded Enabling Features
In some instances, WES, users can select subsets of OS functionality for use. There are also features that
are embedded specific that have been created and included with the products over time. Most of these
features are intended to help improve the reliability or stability of the embedded system. In some cases,
they help to restrict how a user can interact with the system. Often, the goal is to help transition the
device from being a general purpose computer to more of an ‘appliance’. As an appliance, it can be reset
to a factory original condition simply by rebooting it.

In this section, we will review the most common Embedded Enabling Features and Lockdown features
that have been created. We indicate the versions in which they are present and any particular
limitations to their use. We will not discuss every EEF or Lockdown feature because some are just not
used that often anymore. The reason they are not used is because better alternatives now exist or
hardware advancements have made them unnecessary.

Write Filters

Write filters are designed to limit or, in some cases, prevent any writes from occurring to a disk or
selected partition(s). Their advantage is that they can significantly help to minimize disk corruption. They
can help prevent things, like a virus or malware, from permanently infecting or altering a system. With
some write filters, you can boot from media that is physically locked as Read-Only, which makes the OS
even more stable and reliable.

Write filters do have some disadvantages. Unless properly configured, user data can be lost, and the
write filter overlay can fill up over time. This can limit the potential maximum system uptime before a
system reboot is needed. If the overlay space becomes exhausted, the system will become unresponsive
and eventually crash. Additionally, avoid using a page file with your system on a partition that is
protected using a write filter. In general, for embedded systems, it is better to disable the page file to
avoid conflicts or other issues.

With write filters, there is the potential for repetitive effects when booting from an image that is not
updated with persistent data at each boot. The Daylight Savings Time (DST) change is a common
example of this issue. The clock will need a way to automatically adjust if necessary. We urge you to test
this scenario. To learn about approaches that can be used for the DST issue with regard to WES 7, go to
http://go.microsoft.com/fwlink/?LinkId=671726.

The table below shows which write filters are available for various embedded versions:

OS Version EWF FBWF UWF

Windows XP
Embedded

Yes Yes (SP2 or later) No

Windows Embedded
Standard 2009

Yes Yes No

WePos 1.1 No Yes No

http://go.microsoft.com/fwlink/?LinkId=671725
http://go.microsoft.com/fwlink/?LinkId=671726

14

POSReady 2009 No Yes No

Windows Embedded
Standard 7

Yes Yes No

POSReady 7 Yes Yes No

Thin-PC No Yes No

Windows Embedded 8
Standard

Yes Yes Yes

Windows Embedded 8
Industry

No No Yes

Windows Embedded
8.1 Industry

No No Yes

Windows 10
Enterprise

No No Yes

Enhanced Write Filter

The first write filter introduced for Windows XP Embedded was the Enhanced Write Filter. When
enabled, it protects one or more selected partitions from writes at the sector level. This means that
everything on a protected partition can be read from. However, any attempt to write to the disk caches
in an overlay. EWF offers three modes of operation that define where the overlay is stored:

 EWF-DISK: This mode creates a separate EWF partition to store the write filter state and status.
It then uses the remaining unallocated disk space on the partition as one or more overlay
checkpoints. This can be useful for systems where they might want to roll back to a previous
update level if a problem is detected. EWF-Disk is not generally used that much and has been
removed in newer versions.

 EWF-RAM: This mode also creates a separate EWF partition in the unallocated portion of the
disk to store filter state and status. This partition is usually around 8 MB in size per protected
partition. Any data writes that would normally go to the disk are cached in a RAM overlay
instead.

 EWF-RAM-REG: Unlike EWF-RAM, which requires a separate EWF partition to be present on the
disk, this mode stores the filter state in the registry instead. This can be useful especially on
certain devices that only support having a single partition present, such as Compact Flash
devices. Again, all writes that would normally be written to the disk are cached in a RAM overlay
instead. The disadvantage of this method is that, instead of just disabling the filter, you must
also perform a commit before the filter will disable. If you do this directly after a boot, there
should be no issues. However, if you have been running the system for a while, you may
inadvertently commit other unwanted changes.

For EWF-RAM and EWF-RAM-REG, the system allocates a certain portion of the system RAM to use for
the overlay space as needed. If your system has 2 GB of RAM, it is not uncommon for 512 MB or 1 GB to
be used for the overlay. Alternatively, if you have 4 GB of RAM, 1 or 2 GB may be used for the overlay.
To learn more about how the overlay space is used, go to
http://go.microsoft.com/fwlink/?LinkId=671905.

http://go.microsoft.com/fwlink/?LinkId=671905

15

There is one vital thing to keep in mind with regard to the overlay. As the overlay becomes full, you must
make the system perform a reboot to free up the overlay space. If you do not do this, the system could
become unresponsive or crash. For this reason, it is important to determine the average number of
writes to any protected partitions over a 24-hour period. For example, you determine that 100 MB of
writes occur each day, and there is 1 GB of free RAM space available for overlay use. You could infer that
the system will operate for almost 10 days before needing to reboot. However, as a precaution, you
might want to schedule a weekly reboot. Alternatively, you can examine the written data and decide to
turn off those services or redirect them to another disk or partition that is not protected.

EWF also provide an Application Programming Interface (API) so that you can create your own
application that interacts with it. To learn more about the API, go to
http://go.microsoft.com/fwlink/?LinkId=671906.

To read about common system items that you should review when trying to minimize writes on a
system partition, go to http://go.microsoft.com/fwlink/?LinkId=671908.

To read the Embedded Device Robustness Checklists, go to
http://go.microsoft.com/fwlink/?LinkId=671909.

To find other writes that might be occurring on a given partition, we suggest you monitor activity with a
utility like Process Monitor. Configure Process Monitor so it writes its data to a separate, unprotected
partition if EWF is enabled or performs the monitoring when EWF is disabled. This utility will capture a
large amount of data in just a few minutes. To simplify analysis, do not capture more than 2 to 5
minutes of data at a given time. To learn more, go to http://go.microsoft.com/fwlink/?LinkId=671910.

EWF-RAM for Read-Only Systems

Because of industry regulations or an attempt to increase the overall reliability of the system, some
systems types will boot and run from Read-Only media. This could be media that has been locked using
a physical switch, such as an SD card or certain USB Flash drives. It may be an item that is always read-
only like a DVD-ROM. For these deployments, you will normally need to let the system run on read/write
media while you perform other setup tasks. Then turn on the read-only status once everything is fully
configured.

A read-only setup significantly reduces the chance of accidental changes or corruption to the disk that
power surges or sudden power loss might cause. Mechanical failures, gamma rays, or extreme weather
conditions might still be able to affect the information on these drives. However, this setup is about as
safe as you can make an image without including multiple read-only disks for fallback and redundancy
purposes.

There is a disadvantage to an image that is physically write-protected. It generally becomes impossible
to update that image without the physical intervention of a technician in the system. Even if functional
updates are not required, new security threats continue to be found. Unless these systems do not
operate on any form of network, plan an update on some periodic basis, even if only once a year. A
security threat would not be able to permanently infect the image on the read-only media. However, a
threat could possibly infect the system as soon as it boots or modifies any drives that are not read-only.

To properly enable this for Windows 7 and beyond, there are two files you must delete before flipping
the read-only switch. Both are called bootstat.dat, and one version is located in \boot and the second
version is in the \window folder.

One question you might ask is, “How much space can my EWF Overlay consume in my system?” A blog
was written when Windows Embedded Standard 7 was still in beta. WES 7 was called Windows

http://go.microsoft.com/fwlink/?LinkId=671906
http://go.microsoft.com/fwlink/?LinkId=671908
http://go.microsoft.com/fwlink/?LinkId=671909
http://go.microsoft.com/fwlink/?LinkId=671910

16

Embedded Standard 2011 at that time. The blog discusses this question and the potential range of
overlay use.

EWF-HORM for Quicker Boot

If you have used a Windows laptop, you might be familiar with shutdown, log off, reboot, sleep, and
hibernate. Sleep sets the system to a very low power state, but continues to draw power from the
battery. This keeps the contents stored in RAM active and available. Sleep can preserve that system
state for a few hours, or possibly even a few days, but the battery will run out of battery power. If that
happens, the outcome is similar to pulling the power cord while the system is running. Hibernate takes
all of the information currently stored in RAM and writes it to the hard disk in a single file. This file is
called hiberfil.sys, and it is generally the size of all the running applications loaded in your system’s RAM.

HORM stands for Hibernate Once, Resume Many. HORM was created to help embedded OEMs who
wanted to have a quicker apparent “boot time” for their systems when customers turned them on. It
also allowed them to have an application already “running” as the shell. This could save time loading
and initializing that application. For example, on XP Embedded, a system could take two minutes to boot
and load an application before it was fully ready for use. However, if you used HORM, the entire system
restore might only take 30 to 45 seconds. A system resuming from hibernation still has to re-enumerate
hardware and re-establish any network connections.

There are other design concerns and complications that must be considered before using HORM. For
example, the system may want to use one or more unprotected partitions as a data storage drive. There
is a certain sequence you must follow programmatically for dismounting those partitions from the
system before creating the hibernation state. Any application that was running cannot have any open
file handles to those dismounted partitions. First, because the partition is being dismounted, the file
handle is no longer valid at that point. Second, because this is a HORM image, if data had been written
during a previous run, the file pointer location would no longer be correct. Therefore, you would start
overwriting any previously stored data at each boot. To avoid all these issues, only open files after the
system resumes from hibernation. For information on how to dismount partitions before creating the
hibernation file, go to http://go.microsoft.com/fwlink/?LinkId=671912.

This article, “Dismounting Volumes in a Hibernate Once/Resume Many Configuration”, has a complete
code sample. Generally, you would want to use a batch file that calls the sample code, such as
dismountsample.exe. You would build this utility based on the sample code in the link above. For
example:

@echo off
Dismountsample.exe
YourApp1.exe

YourApp2.exe

When called, the sample batch file above first dismounts any drives you specified and then causes the
system to go into hibernation. Once the system resumes from hibernation, it continues to execute the
next instruction in the batch file, which is to launch YourApp1.exe and then YourApp2.exe, etc. Using
this mechanism, you can launch any applications you need after resuming from hibernation.

Servicing a device that is protected with a write filter is already complex, but servicing a system running
HORM adds another layer of complexity. In addition to disabling the write filter, you also have to disable
HORM. Once the updates have been installed, you need to create a new hibernation state again. To read
about the steps you should follow when servicing a HORM-based system, go to
http://go.microsoft.com/fwlink/?LinkId=671914.

http://go.microsoft.com/fwlink/?LinkId=671911
http://go.microsoft.com/fwlink/?LinkId=671912
http://go.microsoft.com/fwlink/?LinkId=671913
http://go.microsoft.com/fwlink/?LinkId=671914

17

EWF API

The EWF API is available to OEMs, and it provides mechanisms to check the EWF state and control EWF,
if desired. You can use the EWF API in place of ewfmgr.exe. Some OEMs have developed utilities that
run in the system tray based on the EWF API’s functions.

To check the overlay details, you can write an application using the EwfMgrGetOverlayStoreConfig
function to view the EWF overlay configuration information. The following pages contain some sample
source code that demonstrate how to get the details:

 http://go.microsoft.com/fwlink/?LinkId=671915.

 http://go.microsoft.com/fwlink/?LinkId=671916.

File-Based Write Filter

Microsoft introduced a new type of write filter when the Service Pack 2 update for Windows XP
Embedded was released. This new write filter is the File-Based Write Filter (FBWF). EWF works at the
sector level and can only protect an entire partition at a time. FBWF works at a higher level in the file
system to protect files and directories. You can configure FBWF to write certain files or directories
directly to the disk instead of having the write filter cache them. HORM is not an available option for a
disk when FBWF is in use.

FBWF is mostly used by systems configured as thin-clients or point of sale terminals. These systems use
FBWF because they often run with only a single disk and a single partition. These systems might want an
application to write out any logs they need. However, they want to keep the C:\Windows folder locked
down to prevent corruption of system files. FWBF allows them to do that.

FBWF and EWF are offered as disk protection mechanisms in several Windows Embedded products.
They can even be included and used in the same OS image. They cannot be used at the same time on
the same partition. However, you could configure EWF to protect everything on a C: partition, while
FBWF protects some files and directories on the D: drive. Generally, this is an uncommon configuration,
but it is possible.

With regard to the overlay, there is a key difference between EWF and FBWF. EWF will dynamically
expand the overlay as needed so long as there is free RAM. However, you must specify how much RAM
FBWF should use for an overlay. By default, FBWF will only reserve 64 MB, so you will likely want to
increase this value. To change the size of the overlay that will be used on the next boot, use fbwfmgr
/setthreshold 1024 to reserve 1 GB of space. For more information on FBWF configuration commands,
go to http://go.microsoft.com/fwlink/?LinkId=671917.

Common FBWF Scenarios

When using a single partition with FBWF, there are some common exclusions you might want to add to
the system to make it easier to maintain. Some of these will also list registry key locations, which we will
discuss further in the Unified Write Filter WMI Provider Reference
Instead of exposing an API like EWF or FBWF, you can now control UWF using WMI Providers. To learn
more about those providers, go to http://go.microsoft.com/fwlink/?LinkId=671930.

Registry Filter section. For more information, go to

 http://go.microsoft.com/fwlink/?LinkId=671918.

 http://go.microsoft.com/fwlink/?LinkId=671919.

http://go.microsoft.com/fwlink/?LinkId=671915
http://go.microsoft.com/fwlink/?LinkId=671916
http://go.microsoft.com/fwlink/?LinkId=671917
http://go.microsoft.com/fwlink/?LinkId=671918
http://go.microsoft.com/fwlink/?LinkId=671919

18

FBWF API

Like EWF, FBWF also offers an API so that OEMs can programmatically control the filter if they wish. For
more information on the API, go to http://go.microsoft.com/fwlink/?LinkId=671929.

Unified Write Filter

Microsoft introduced the Unified Write Filter with Windows Embedded 8 Standard. UWF is now the only
write filter included with Windows Embedded 8.1 Industry. While it is intended to provide an experience
that is similar to EWF and FBWF, it is implemented at the sector level like EWF. This means that it does
not recognize files or directories in the same manner that FBWF does. Therefore, UWF cannot write
directly to excluded locations. It does allow you to specify folders or files for an exclusion list so that
writes to those locations will persist. Unlike FBWF, writes to those excluded locations will impact the
overlay space being used. Only a system shut down or a clean reboot causes the modified data in those
locations to persist and frees up overlay space.

UWF allows for two modes of operation: UWF-RAM and UWF-DISK.

 UWF-RAM: Uses system RAM to cache any writes to the protected partitions. You must use this
mode if you are using Read-Only media or HORM.

 UWF-DISK: This mode uses a pre-defined file on the system volume. The volume size is fixed and
cannot be increased during run time. Unlike EWF-DISK mode, this mode does not allow for
multiple checkpoints of overlays to be established for rollback purposes.

UWF offers HORM support, but it currently requires that all disks and partitions in the system be
protected by UWF, and you cannot specify exclusions. If you need to persist data somewhere when the
system is running, use a network share or some other location not locally mounted by the system.

UWF has now incorporated the Registry Filter service. You can still add registry exclusions, but there is
not a separate RegFilter service running on the system.

Common Usage and Design Considerations

Writes to excluded folders can still increase the overlay space a protected UWF partition uses. We
recommend using UWF as if it was EWF by having it protect an entire partition. For example, you might
have data you want to persist or a database you want to run on your system. We suggest that you
create one or more additional partitions for data and do not protect them with UWF. For example, you
might use C: as your system partition, which is protected by UWF. You can then create an unprotected
D: partition (and possibly an E: partition) as a location to permanently store any data.

Unified Write Filter WMI Provider Reference

Instead of exposing an API like EWF or FBWF, you can now control UWF using WMI Providers. To learn
more about those providers, go to http://go.microsoft.com/fwlink/?LinkId=671930.

Registry Filter

The Registry Filter allows customers to use a write filter and still join their devices to a domain, such as
thin-client systems in an enterprise. Before the Registry Filter, domain devices would appear to work
correctly after initial deployment. After a few months, however, a system reboot or sudden power loss
might occur. Consequently, the domain controller would stop trusting hundreds, or even thousands, of
these domain embedded clients, and these clients would “fall off” the domain.

http://go.microsoft.com/fwlink/?LinkId=671929
http://go.microsoft.com/fwlink/?LinkId=671930

19

The reason for the fall off is the domain controller updates its Machine Secret Key periodically. Usually it
is every thirty, sixty, or ninety days, depending on how the domain administrator has configured the
domain controller. This value normally persists to the registry and serves as a handshake between the
domain controller and a device. However, when a write filter was enabled, the updated domain
Machine Secret Key would be lost in the drive overlay. A device would try to use the original Machine
Secret Key it had been given when it first joined to the domain. Because this key was now expired, the
domain controller would reject the device.

To solve this issue, Microsoft created the Registry Filter. It is designed to work with EWF and FBWF and
allows the persistence of two monitored registry keys. The first is the TSCal key for use with RDP
connections, and the second is the Domain Secret Key:

 HKEY_LOCAL_MACHINE\Software\Microsoft\MSLicensing

 HKEY_LOCAL_MACHINE\Security\Policy\Secrets\$MACHINE.ACC

The location of the Registry Filter-monitored keys is:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RegFilter\Parameters\MonitoredKeys\0]

"ClassKey"="HKLM"

"FileNameForSaving"="MSLic.rgf"

"RelativeKeyName"="Software\\Microsoft\\MSLicensing"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RegFilter\Parameters\MonitoredKeys\1]

"ClassKey"="HKLM"

"FileNameForSaving"="MacAcc.rgf"

"RelativeKeyName"="Security\\Policy\\Secrets\\$MACHINE.ACC"

In addition to the two monitored keys, OEMs are also allowed to add additional registry keys for
monitoring. Anything else you add is used “As-Is”, which means that only the two official keys are
supported. You can only use Registry Filter to persist custom keys in the HKLM registry root. The system
can update registry keys early in the boot process before the Registry Filter loads. Therefore, we cannot
guarantee that the Registry Filter will persist all registry keys in the SYSTEM hive. The Registry Filter can
only persist registry keys that change after it loads and starts tracking registry changes.

The Registry Filter does allow monitored keys to persist, but that persistence is not always
instantaneous. If a monitored key is updated, the Registry Filter attempts to persist that change
immediately. However, because of disk write caching policies, that persistence is not always
instantaneous. Because of this, it can sometimes take 1 to 2 minutes before an updated key is actually
persisted to the physical HDD. Keep this in mind if you make registry changes quickly and then
immediately shut down or reboot the system within a few seconds. Those changes might not have been
fully persisted to the HDD. If you want to make rapid updates to files and registry keys, it is better to
disable your write filter when you are applying those updates.

Shell Launcher

A common scenario for embedded systems is to present a single application to a user. This can be true
with an information kiosk, medical device, or gaming system. For the XP-based systems, it was possible
and common to present one shell for an end-user account. In addition, the system could provide

20

explorer.exe as the shell for the administrator account. This was accomplished using the registry keys
documented at http://go.microsoft.com/fwlink/?LinkId=671931.

This registry key approach worked well. However, it would sometimes require some additional script
development, such as creating a script to log the user off if the shell application exited. The registry keys
for Windows XP continue to be valid. They are an option for OEMs on all the embedded versions
including 8.1 versions.

In Windows Embedded Standard 7, Microsoft introduced the Shell Launcher component. Shell Launcher
helps to simplify the custom shell process and provides additional support, such as re-launching the
chosen application when it exits. In addition to supporting custom shells for specific users, it also allows
a shell to be specified for a particular user group. This can be beneficial in an enterprise environment
where you might have thousands of users, but only need three different shells for the user groups.
Based on the return code the application provided when it exits, the Shell Launcher can perform one of
four actions:

 Restart the Shell (the exiting application).

 Restart the device.

 Shut down the device.

 Do nothing.

You can also use the Embedded Lockdown Manager to help configure the Shell Launcher. For more
information, go to http://go.microsoft.com/fwlink/?LinkId=671932.

Keyboard Filter

The Keyboard Filter was introduced as part of Windows Embedded Standard 7. Before its introduction,
you could prevent some key combinations by intercepting them if you registered them with custom
applications. However, not all combinations could be blocked. In an effort to help lock down devices on
which OEMs only wanted users to interact in a certain manner, Microsoft created the Keyboard Filter. It
allows you to block the use of individual keys or key combinations. Some common, pre-defined key
combinations that you can block include: Alt+F4, CTRL+ALT+DEL, Windows+L, etc.

In addition to the pre-defined keys, you can also filter specific, custom key combinations. In Windows 7-
based products, filtering only worked with physical keyboards. In the 8 and 8.1 versions, you can also
filter keys generated from the On-Screen Keyboard (OSK) or a combination of physical keys and OSK keys
simultaneously.

You can now configure the Keyboard Filter as part of the Embedded Lockdown Manager. Note that the
Keyboard Filter cannot block the Sleep key. For additional information, go to
http://go.microsoft.com/fwlink/?LinkId=671933.

Gesture Filter

The concept of gestures was introduced in Windows 8 as part of the new UI design to make touch an
integrated aspect of the system. Touch is critical for using Windows Store Apps and is also involved with
configuring the system using charms bars.

The Gesture Filter was introduced in Windows Embedded 8.1 Industry. With it, OEMs can control what
gestures they want their users to access. Certain gestures, such as the top edge and bottom edge
gestures, bring up an app bar that is specific to each Windows Store App. These gestures cannot be
blocked. You can block the following gestures: Left, Right, Top extended swipe, and each corner
individually.

http://go.microsoft.com/fwlink/?LinkId=671931
http://go.microsoft.com/fwlink/?LinkId=671932
http://go.microsoft.com/fwlink/?LinkId=671933

21

When you block a gesture, you can still access its associated UI using a keyboard shortcut or an
application. For example, when you block the right swipe gesture, the Win+C keyboard combination can
still access that charms bar. To block a key combination, you must also use the Keyboard Filter.

Important The Gesture Filter does not filter gestures on accounts with Administrator rights. For more
information, go to http://go.microsoft.com/fwlink/?LinkId=671953.

Dialog Filter/Pop-up and Message Box Filter
A portion of this functionality was first introduced as part of XP Embedded. The functionality was known
as the Message Box and Balloon Pop-Up Interception component. With that component, you could set a
default reply for a message box and also suppress balloon pop-ups. For more information about the XP
Embedded component, go to http://go.microsoft.com/fwlink/?LinkId=671954.

In WES 7, the Message Box and Balloon Pop-Up Interception component was known as the Message Box
Default Reply. You configure Message Box Default Reply to capture windows when they are created.
Once a window is drawn, Message Box Default Reply determines if the window should perform a default
action or if Message Box Default Reply should block the window. All of the action occurs off screen. To
help with this configuration process, Microsoft created a tool called the Dialog Filter Editor. For more
information related to these features for WES 7, go to the following:

Dialog Filter Editor (WES 7):

http://go.microsoft.com/fwlink/?LinkId=671955.

Add Message Blockers (WES 7):

http://go.microsoft.com/fwlink/?LinkId=673956.

For 8 and 8.1, the functionality offered by the two components has been merged into a single Lockdown
feature known as the Dialog Filter. The Dialog Filter Editor tool has been moved to the Embedded
Lockdown Manager to simplify where and how this feature is configured. For more information, go to
http://go.microsoft.com/fwlink/?LinkID=673957&clcid=0x409.

USB Filter

This is a new Lockdown feature that was recently introduced as part of Windows Embedded 8.1
Industry. It allows OEMs to control the devices (if any) and USB ports that are available for use on a
system. With USB Filter, you can prevent users from attempting to manipulate or hack your system by
plugging in a physical keyboard. You can also stop them from inserting a USB Flash drive that might
contain viruses or malware. You can also authorize the use of specific devices, such as a particular brand
and size of Flash drive by your technicians. The system would ignore all other Flash drives when
inserted.

USB Filter functionality only works when the OS is running. Therefore, if you set the system BIOS to boot
from a Flash drive, USB Filter cannot control USB access after a power failure or reboot. Check your
system BIOS/UEFI settings when using this feature. For more information, go to
http://go.microsoft.com/fwlink/?LinkID=673958&clcid=0x409.

Embedded Lockdown Manager

The Embedded Lockdown Manager (ELM) was introduced as part of Windows Embedded 8 Standard. It
is a snap-in that runs in the Microsoft Management Console (MMC) and is designed to simplify the
configuration of the installed Lockdown features. You can also configure ELM remotely on an 8.1
Industry or Standard 8 device. To do so, run ELM on your development computer, and then connect to

http://go.microsoft.com/fwlink/?LinkId=671953
http://go.microsoft.com/fwlink/?LinkId=671954
http://go.microsoft.com/fwlink/?LinkId=671955
http://go.microsoft.com/fwlink/?LinkId=673956
http://go.microsoft.com/fwlink/?LinkID=673957&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=673958&clcid=0x409

22

those systems. ELM will only display the Lockdown features installed on the system. To make a feature
visible, add that package or turn on the feature.

In addition to configuring the Lockdown features, ELM allows you to export a PowerShell script based on
your settings for each feature. After configuring a single system, you could use the exported PowerShell
scripts to configure other systems you wanted to lock down on new installation deployments. You can
also use WMI and PowerShell to configure these features directly. To minimize problems, we
recommend that you get one system working properly using the exported Power Shell script first before
using it on other systems. For more information on ELM, go to
http://go.microsoft.com/fwlink/?LinkID=673959&clcid=0x409.

Assigned Access

This feature allows you to restrict a specific standard account to only run a specific Windows Store App.
Unlike the other embedded features, Assigned Access is only available on the desktop versions of
Windows 8.1. It incorporates a combination of other Lockdown features; for example, some keyboard
combinations and some gestures are restricted. Users cannot customize the individual keys or gestures
that are blocked. For more information on Assigned Access, go to
http://go.microsoft.com/fwlink/?LinkId=673960.

Windows 8 Application Launcher

While similar to the Shell Launcher, the Windows 8 Application Launcher launches a single Windows
Store App when a given user account logs in. This feature and the Shell Launcher cannot be used
together simultaneously. When this feature is turned on with kiosk mode enabled, even the start menu
will not offer any programs.

Important The app you intend to launch must be installed on the device for the chosen user or be
available to all users. If the application does not launch correctly when the user first logs in, the system
will retry the launch every 100 milliseconds for up to 10 attempts. For more information on customizing
your Windows Store App to provide a custom exit code to the Application Launcher, go to
http://go.microsoft.com/fwlink/?LinkId=673961.

AppLocker

This is not an embedded-only Lockdown feature; it is present on the enterprise-based SKUs. AppLocker
can restrict the system so that it only runs a specific subset of application executables. This functionality
is available on 7 and 8-based systems. You can write scripts for AppLocker and customize it using group
policy objects (GPOs).

This feature was known as Software Restriction Policies on Windows XP. However, its mechanism had
management overhead. The overhead became very cumbersome in some environments when new
versions of an application were deploying. Microsoft created AppLocker in Windows 7 to simplify this
mechanism. To learn more about AppLocker on Windows 7, go to
http://go.microsoft.com/fwlink/?LinkId=673962. For updates to AppLocker on Windows 8.1, go to
http://go.microsoft.com/fwlink/?LinkId=673963.

Common Usage Scenarios
In this section, we will try to cover some common approaches OEMs use when they create an embedded
image for a particular device market segment.

http://go.microsoft.com/fwlink/?LinkID=673959&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=673960
http://go.microsoft.com/fwlink/?LinkId=673961
http://go.microsoft.com/fwlink/?LinkId=673962
http://go.microsoft.com/fwlink/?LinkId=673963

23

Kiosk Device

A kiosk device might be intended to only serve as an electronic billboard showing advertising. It might
also be designed to provide more specific information, such as directions or locations of stores.
Depending on how you expect users to interact with this device, you might turn on features such as
Keyboard Filter, Gesture Filter, and USB Filter. The goal is to limit how users can interact with this
system so that it does not change to an unknown state.

You will also likely use the Shell Launcher (or the shell registry keys) and configure the kiosk to have two
user accounts. For the end-user account, the system logs on automatically and runs the custom kiosk
application as its shell. For the administrator account, the system runs explorer.exe as the shell. Using
the administrator account, you can install service updates and perform other necessary servicing, such
as updating the ads that display on the device. Other options are to run the kiosk from an SSD type drive
and use some form of write filter. Both of these approaches can help minimize disk corruption in the
field once you deploy these devices.

Gaming

Creating an embedded system for use in a gaming machine, such as a slot machine, must meet and pass
several, very strict regulations. In the United States, the Nevada Gaming Commission primarily mandates
these regulations. However, each state or region can have its own unique regulations as well. If this is a
market segment you are considering, carefully research these requirements before creating a gaming
device.

For example, in Nevada, one of the requirements is that the system boots and runs from read-only
media. This helps to guarantee that the image and software cannot be changed after it has been
certified by the gaming commission. In this type of environment, most customers choose to leverage
EWF-RAM mode. Then the system boots from an SD card, which has physically been locked, or a
CD/DVD-ROM that contains the OS. Windows XP or Windows 7-based embedded versions are currently
the best options for this type of scenario because they do not require individual OS activation. Windows
8/8.1 systems do require an activation code that must be written to each individual image. This
activation code requirement makes them an impractical choice given the current gaming regulations.

Gaming devices can sometimes experience sudden power loss caused by power outages. However, it is
not very common that they experience disk corruption because their boot media is generally in a
physical, read-only state. Anytime you update a gaming device image, it must be re-certified. Therefore,
these systems are not generally updated as frequently as enterprise devices. More often, they might get
a new image with feature and security updates quarterly or yearly.

Medical

Medical systems need to pass their own set of certifications and regulations depending on where and
how they will be used. In the US, you might need to have the device certified by the American Medical
Association or the Food and Drug Administration. You should also carefully check the licensing terms for
the specific embedded version you are considering using. Certain life-critical applications may not be
allowed or supported by the license terms.

Windows Embedded is often used in medical diagnostic equipment, such as ultrasound systems. These
systems will often leverage a write filter and possibly HORM to provide a faster boot time. They often
need to have one or more partitions available to persist patient data locally as it is generated.

http://go.microsoft.com/fwlink/?LinkId=687968
http://gaming.nv.gov/
http://www.ama-assn.org/ama
http://www.ama-assn.org/ama
http://www.fda.gov/MedicalDevices/default.htm

24

It is very common in hospitals for the power on these devices to be removed suddenly when they are
moving from one location to another. Even if a write filter is used, this sudden power loss can lead to
some level of disk corruption over time. For this reason, we strongly urge you to make the boot partition
or OS use physical read-only media. Alternatively, include a small Uninterruptable Power Supply (UPS) as
part of the system’s design. The UPS allows the system to gracefully shut down over a few seconds once
power has been removed. One way to include a built-in UPS is to leverage a hardware design that
incorporates laptop hardware so it contains its own battery.

Military

This is another category where you should carefully review the license terms for the specific version of
Windows Embedded that you are considering using. Depending on where and how you intend your
system to be used, it is likely you must pass some level of Department of Defense certification in the US.
Additionally, it might require other levels of certification depending on which branch intends to use the
system.

If these systems are going to be on a network, then the regular application of security updates will be an
important design consideration. Using a write filter and making them as ruggedized as possible is
another option to consider given the environment in which they might be used.

Because timing may be critical in military situations, consider disabling background services and tasks to
limit the number of processes that are running on the system. For example, the system should not start
a disk defragmentation process in the middle of relaying mission critical information.

Space or Extremely Remote Locations

It very difficult to service a device that you intend to send to space or place in a remote location
(Antarctica, ocean floor, etc.). Therefore, this category of device must be as robust as possible. Because
of this, you might decide to make certain trade-offs. For example, you might never install updates or
never provide other regular servicing to prevent the device from getting stuck in an unrecoverable state.
Hopefully, these devices would only be on your own custom, private network. Using a private network
should help minimize potential security threats compared to using a public network.

For this type of device, consider using drives that have been physically write locked. Also consider using
EWF or UWF to protect the entire drive for your OS and application. If you need to store or log any data,
use a second writeable drive.

To provide additional levels of redundancy, we suggest you use a second, or possibly a third, identical
copy of the OS drive. You can then use a third-party utility, like GNU GRUB, to chain the boot loaders.
That utility can also set up the fall back boot options or use a UEFI BIOS if that is available. If the first
drive becomes corrupted for some reason (gamma rays, etc.), then the boot would attempt to fall back
to the second drive. The system would use that second drive as its system disk and boot from it. You
should plan to test and verify that this fallback operation works as intended before deployment.

Important Remember to verify that any hardware or system components used in this design can
withstand the environmental conditions and temperatures of your chosen target environment.
Additionally, conduct long-term tests, and carefully consider the scheduling frequency of a regular
system reboot to help clear up the overlay space.

http://www.defense.gov/
http://www.gnu.org/software/grub/

25

Thin Client Terminals

These devices are most generally used in enterprises or universities. Their main purpose is to allow users
to remotely connect to a server using a remote desktop connection (RDP). Regular client systems on a
domain must download and persist user-specific client settings. With Thin Clients, this can all be handled
on the server once the connection is established.

With Thin Clients, users are generally only interacting with RDP because it is usually the only application
running on these systems. Therefore, they are less vulnerable to corruption or inadvertent changes by
an end user. We still encourage use of a write filter to protect them from potential virus infections
acquired over the network or through some other mechanism.

RDP is the main focus on these systems; it will sometimes be set to launch automatically as part of the
automatic logon process. RDB might be set as the shell instead of Explorer using the Shell Launcher. This
helps to minimize potential user interactions with the local system. In addition to the built-in remote
desktop application, some customers may also want to leverage third-party solutions, such as those
offered by Citrix Systems.

Point of Sale Terminals

You will find these systems at retail store locations. Their primary purpose is to process customer
purchases or perform price checks on an item. Often they will be running a form of POSReady. They
might have a touch screen for input, possibly a magnetic stripe reader for credit cards, and a barcode
scanner for reading UPC codes attached. Usually these devices will be connected by a serial connection,
or, more often, USB.

POS terminals will most likely use their own custom third-party application as a full-screen application
that their employees interact with for processing the customer sales. They might need a database
connection or regular local updates for pricing and other information. Therefore, you should have
multiple partitions with one unprotected if using EWF. FBWF would be another option on a single
partition setup.

Embedded System Prototyping and Development
This section is intended to help OEMs understand the general process they should follow when starting
embedded system development. The section will focus on best practices and some common
troubleshooting approaches. The term hardware platform represents the components that you intend
to use in your embedded system. This would include, but is not limited to, CPU, motherboard, RAM,
Hard Disk Drives (HDD), Solid State Drives (SSD), video card, power supply, mouse, keyboard, and
monitor.

Hardware Validation

When considering any new hardware platform for your embedded system, first deploy the desktop
equivalent OS version. Then verify that your embedded system runs on the desktop OS without any
problems. For example, if you want to use WES 7 as your embedded OS, first install your embedded
system on Windows 7, and verify that it performs correctly. Your embedded system may have limited
drive space; for example, the target drive you want to ship with is 8 GB in size. The solution is to attach a
larger drive for this portion of the testing. Once you have installed the desktop OS, ensure that all the
drivers you need are installed, and apply all applicable updates from Windows Update.

26

Additionally, test the performance of any in-box, custom, or third-party applications you intend to run to
ensure they meet your requirements. To deliver the required performance for your users with a given
application or usage scenario, you must choose the appropriate CPU. A single-core Intel® Atom™ chip
might run everything. However, you might discover you need to use a quad-core Intel Atom chip or
some other type of CPU.

After verifying that the desktop OS runs correctly and all in-box and third-party drivers are installed,
collect a PMQ file from this system. A PMQ file contains information about your system hardware,
including the installed in-box and third-party drivers. To generate the PMQ file, copy a tool called Target
Analyzer Probe (TAP.exe); TAP.exe installs as part of your embedded toolkit. For WE8S, you generally
find this utility (with two versions) at the following path:

%PROGRAMFILES%\Windows Embedded 8 Standard\Toolset\Embedded Tools\

1. tap_x86.exe
2. tap_amd64.exe

Copy the appropriate TAP version from your desktop development system to your target hardware
device. (Use a USB Flash drive or whatever mechanism is easiest for you). Then run TAP.exe on the
target system from an administrator command prompt:

tap_x86/o mytargetdevice.pmq

Copy the resulting PMQ file from that system, and move it back to your desktop development system.

At this point, set the first hard disk that contains the full desktop OS installation aside. As you move
forward with your embedded development, you may experience problems. First, check if the same
problems occur on the full desktop OS installation. If the problems are present, a general Windows issue
or bug may be the cause. If the problems do not reproduce on this full desktop installation, you might
need a component or feature in your embedded configuration. If you have ruled that out, check for
differences in the registry setting or policy for a service in the system. Having the desktop OS installation
as a reference for comparison can be very helpful in identifying and resolving these types of issues.

Virtual Machines

You can deploy an embedded OS to a virtual machine, such as Hyper-V or VMware®. However, Microsoft
does not support this type of deployment. All versions of Windows Embedded are designed for
deployment on physical hardware systems. You can use a VM for some initial prototyping or proof of
concept work. However, it is much better to use the physical hardware you plan to ship on for a majority
of your development and testing.

HDD vs. SSD Performance Considerations

When Solid State Drives were first introduced, they were quite small compared to traditional Hard Disk
Drives, and their lifespan and reliability were not the greatest. They have now been in the market for
several years, and those initial concerns and limitations have largely been overcome. While they are still
more expensive per GB, using an SSD in your embedded system can provide some of the best overall
performance improvements per dollar. It is not uncommon for SSD read and write speeds to be ten
times those of a traditional spinning HDD. Some SSD drives include a small capacitor. The capacitor
allows any data in the on-board RAM cache to be persisted to the drive during a power failure. This does
not mean the drive will not get corrupted. However, you should not lose any data writes; this helps to
minimize the potential for corruption. SSD drives with capacitors are becoming more prevalent.

27

The disadvantage of SSD drives is that their overall cost is approximately $0.50 (USD) per GB in the best
case. The cost can be much higher on smaller drives. By comparison, current HDD prices have reached
$0.04 (USD) per GB. If you need to store large volumes of data, HDDs are still the most economical
option for use as a large data drive.

When SSD drives were first introduced, their expected lifespan was not nearly as long as that of
traditional HDDs. However, wear leveling and other improvements in Flash storage technologies, such as
TRIM support, have significantly reduced that limitation. SSD lifespans should no longer be a concern for
most embedded systems. To ensure that Windows 7 properly activates the appropriate SSD support
(such as TRIM), run winsat.exe at least once on your target hardware. This ensures that SSD support has
been correctly profiled before capturing the image for deployment.

If you are using an SSD, you may still want to improve the overall system performance. Increasing the
amount of available RAM is likely the next best option for improved performance. This is most
applicable if you are running an x64-based version that lets you leverage the extra RAM beyond the 4-
GB limit properly.

Third-Party Drivers

While a PMQ file will make note of in-box and third-party drivers, it cannot automatically add those
third-party drivers to the configuration. You must create custom components for them so they are built
into the image. As an alternative, you can install them during deployment, such as in the sysprep audit
mode. This process has gotten easier on Windows 7 and later versions. However, it was also possible to
install third-party drivers on XP Embedded-based versions after deployment.

When trying to install a third-party driver on an XP Embedded system, you may encounter a problem.
Delete the following registry key from the system and reboot:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup]

"MinimizeFootprint"

If the driver then installs correctly, you can continue to run without this key or restore it. When this key
is present, the system ignores all driver signing verification and does not call Crypto APIs. This key was
created to reduce the overall size of XP Embedded images. However, given the size of modern disks, it is
no longer a concern.

Third-Party Applications

If you want to include your own application with a system as you build it, you might want to create a
custom component. However, a third-party application usually has its own installer. Therefore, you will
most likely want to wait until sysprep audit mode or after deployment to install that application.

If a third-party application does not run on your system, there are a few approaches you can use to
identify the problem. First, use depends.exe or dependency walker to scan the process that is failing to
run. This should provide a list of the dependent DLLs the application expects to find on the system. If a
DLL is missing, you may need to include an additional feature package when building the system. A
second approach is to run Process Monitor on the system, and filter by the executable you are
launching. Process Monitor should show any registry keys or files that it is failing to find. Later, we will
discuss using Process Monitor for troubleshooting an embedded system.

http://go.microsoft.com/fwlink/?LinkId=687969
http://dependencywalker.com/

28

Alternative Shell Development

You may plan to have your users interact with your own custom shell on the device. It is important that
you understand that, from the system’s standpoint, almost any executable can be a shell. For example,
the file, notepad.exe, can be set as the shell for a system. The default shell for all Windows systems is
explorer.exe. Explorer.exe shows you a Start menu and draws the Taskbar on your screen.

It is uncommon, but sometimes an application might have some form of dependency on explorer.exe.
On Windows 8/8.1, certain UI options can only be seen when explorer.exe is running, such as the Wi-Fi
Networks Selection Charm dialog. You can have your custom shell make API calls to implement your own
version of this dialog. However, your custom version can no longer be launched within Control Panel like
it did on Windows 7. Because of this potential explorer.exe dependency, we suggest you develop your
own application to use as the shell. Avoid licensing an existing third-party application that was designed
for the desktop environment.

Any shell development should happen on a desktop system because Visual Studio is not supported for
installation or use on Windows Embedded clients. While the Shell Launcher is not available on a desktop
version, you can still leverage the shell registry keys mentioned on the following page:
http://go.microsoft.com/fwlink/?LinkID=671931&clcid=0x409.

For a test shell, create an end-user account, and log in as the end user. Then change its default shell
from explorer.exe to yourapp.exe at the following key location in regedit:

HKEY_Current_User\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

After launching your shell application, you can log off from that account in two steps. You will use a
small batch file and a small VBS script. Instead of setting the shell registry key to point to your custom
shell application, you would have it point to a batch file; see below.

Batch file (launcher.bat):

@echo off

Wscript.exe temp\mywrapper.vbs

The batch file above then invokes the following VB Script file (mywrapper.vbs):

sub shell(cmd)

 ' Run a command as if you were running from the command line

 dim objShell

 Set objShell = WScript.CreateObject("WScript.Shell")

 objShell.Run(cmd),3,True

 Set objShell = Nothing

end sub

shell "yourtestShellApp.exe"

shell "shutdown /l"

This version of the “shell” command (mywrapper.vbs) waits for the process to exit before continuing to
run. You can also create a version that does not wait. Instead, it continues to run the script if you need

http://go.microsoft.com/fwlink/?LinkID=671931&clcid=0x409

29

to launch multiple programs simultaneously during login. To change this wait behavior, change the third
parameter of the following line from True to False:

objShell.Run(cmd),3,True objShell.Run(cmd),3,False

You can develop a custom shell in native or managed code. Sometimes developers have observed a
slightly longer delay in loading and displaying .NET-based applications to the user. If that is your
approach, consider creating a small, native application that displays a graphic as a splash screen to the
user. The splash screen appears while the rest of the application loads and initializes. You can then
create a managed app that sets its windows to draw on top, which hides the splash screen
automatically. The splash screen app can then exit after a fixed time, such as 1 or 2 minutes. The app
can also exit based on a notification from your .NET application.

On the following pages, there are reference samples for developing a splash screen app:

How to Load a Bitmap from a File

http://go.microsoft.com/fwlink/?LinkId=689970.

How to Draw a Bitmap

http://go.microsoft.com/fwlink/?LinkId=689971.

Simple Direct2D Application Sample (Contains examples for the APIs)

http://go.microsoft.com/fwlink/?LinkId=689972.

Debugging and Capturing System Dumps

During your embedded development, there might be times you need to debug an application or driver
on your system. In this section, we will discuss some of the more common debugging tools you can use.

WinDbg

WinDbg (also known as Windows Debugger) is a free debugger from Microsoft. It is included with the
Windows Driver Kit (WDK) SDK and is also available as a standalone download. You can use WinDbg to
debug individual processes locally on a system. You can also use it to debug the kernel and drivers on a
target system.

This kernel debug option is the one primarily used with embedded systems when debugging an
unresponsive OS. This is especially important on embedded systems when a write filter is used to
protect the single partition on the system. If the system is unresponsive, you can transfer the remote
system memory to your connection to WinDbg. The command to capture the file is .dump.

If you are using a serial connection, transfer can take a significant amount of time. Consider using the
/burnmemory switch to reduce the effective amount of available RAM the system uses. For example,
you could reduce the available memory to only 1 GB instead of 4 GB to make the capture process
quicker. To do this, specify the amount of memory you want to remove from use. For example, to
reduce memory usage from 4 GB to 1 GB of RAM, use /burnmemory=3072.

To establish a debug connection with another system on XP or Windows 7, you can use a serial port or
1394 connection. USB was also possible on Windows 7 using a special cable, but it is rare and not as
stable a connection as the other methods. Therefore, we do not recommend USB.

http://go.microsoft.com/fwlink/?LinkId=689970
http://go.microsoft.com/fwlink/?LinkId=689971
http://go.microsoft.com/fwlink/?LinkId=689972
http://go.microsoft.com/fwlink/?LinkId=690207

30

With Windows 8/8.1, you can continue to use serial and 1394, but you now have the option of setting
up a connection using KDNet (Ethernet). To read more about setting up kernel debugging, go to
http://go.microsoft.com/fwlink/?LinkId=690057.

For more information on where to download a copy of windbg, go to
http://go.microsoft.com/fwlink/?LinkId=690059.

Process Dump

Process Dump (ProcDump) is a powerful tool that captures a process that stops responding or fails
because of an exception. It has quite a few parameters. Use it to gather data to analyze what is causing
problems when an application is running on a system. Once in production, you do not have the freedom
to interactively debug the system as you might in a lab setting. Process Dump is useful in the post-
deployment scenario. For more information about Process Dump, go to
http://go.microsoft.com/fwlink/?LinkId=690060.

Crash Dumps

There are three types of crash dumps you can configure Windows to collect when a problem occurs. The
type of problem and the information you need to analyze it will help determine the dump you configure
for capture. You may need to review and analyze the information alone. Alternatively, you may need to
share it with a third-party driver manufacturer or with Microsoft directly as part of a support case.

 Mini-dump: This dump is captured when an application experiences an exception or something
else happens to cause it to exit in an unexpected manner. Only the information related to the
faulting process is captured in the mini-dump. Mini-dumps are generally small, usually only a
few megabytes to a few hundred MB in size. The size depends on the size of the application in
RAM when it was running. This type of dump captures data that is similar to what ProcDump
captures. A mini-dump is best for identifying problems in a specific application, service, or user-
mode driver.

 Kernel-dump: This dump captures the OS kernel and anything running within its context,
including kernel mode drivers. A failure here might happen when a program makes an OS call
that causes an exception, such as a registry or file operation. A failure might also happen
because of a kernel mode driver that is running under the context of the kernel. Most often,
kernel-dumps are used for understanding issues with a driver or the system as a whole. These
dumps are usually larger and can often be half a gigabyte to a gigabyte in size or more.

 Complete System Dump: This dump is not always available by default as an option. It can be
offered by setting a registry key value and rebooting the system. This dump contains everything
that was happening in the kernel and all the processes that were running at the time of the
failure. To capture this type of dump, you must configure a page file. Set the page file size to
equal the physical size of the system RAM plus 300 MB for the additional register information
stored on the CPU. For example, if you have a system with 2 GB of RAM, set the page file to be a
fixed size of at least 2,348 MB. The resulting dump file might be that size, but it could also be
less depending upon how much was running at the time of the failure.

There might also be times when a driver is not causing an exception that causes the system to fail.
However, you might want to capture the system state. Usually, in these situations, the system stops
responding to all commands, but certain parts still seem to be functioning. For example, you might still
see the clock updating or the mouse cursor moving, but every other command is ignored. In those cases,

http://go.microsoft.com/fwlink/?LinkId=690057
http://go.microsoft.com/fwlink/?LinkId=690059
http://go.microsoft.com/fwlink/?LinkId=690060

31

you might want to use notmyfault.exe or a keyboard method to manually stop the system once you
have configured it for the appropriate dump.

Initiate the Manual Capture of a Dump

1. Set the registry to enable a complete dump. Read the knowledge base (KB) article for
instructions: http://go.microsoft.com/fwlink/?LinkId=690061.

2. Create a complete memory dump file.

a. Click Start; right-click Computer, and then click Properties.

b. On the System page, click Advanced system settings, and then click the Advanced tab.

c. Under the Writing debugging information area, click Settings, and then ensure that
Complete memory dump is selected.

Note By default, Complete memory dump is disabled. You can only enable the option if your
computer has more than 2 GB of physical RAM.

Note If you want to enable the Complete memory dump option, manually set the
CrashDumpEnabled registry entry to 0x1 under the following registry subkey, and restart
Windows: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CrashControl

For more information, go to http://go.microsoft.com/fwlink/?LinkId=690062.

Important For the steps above to work properly, you must set the system page file to be equal to the
size of RAM + 300 MB. Therefore, if you have 4 GB of RAM in the system, then 4,192 MB + 300 MB
should be safe.

Note In addition to telling you where to download NotMyFault.exe, this KB article
(http://go.microsoft.com/fwlink/?LinkID=690061&clcid=0x409) mentions the registry keys for enabling
the Ctrl + Scroll Lock + Scroll Lock mechanism. With this mechanism, you can generate a manual dump
using the keyboard:

Generate a Manual Memory Dump Using NotMyFault.exe

If you can log on while the problem is occurring, you can use the Microsoft SysInternals NotMyFault
tool.

1. Download the NotMyFault tool from the following Microsoft website:
http://go.microsoft.com/fwlink/?LinkId=690208.

2. Click Start; right-click Command Prompt, and then click Run as administrator.

3. At the command line, type NotMyFault.exe/crash, and then press Enter.

Note This will generate a memory dump file and a Stop D1 error.

Generate a Manual Memory Dump File Using the Keyboard (PS/2 Keyboard)

Windows features let you generate a memory dump file using the keyboard. If you are using a PS/2
keyboard, you have to create the CrashOnCtrlScroll registry entry. For more information about how to
generate a memory dump file using the keyboard, go to
http://go.microsoft.com/fwlink/?LinkId=690063.

Generate a Manual Memory Dump File Using the Keyboard (USB Keyboard)

The instructions below assume that you are not running a write filter when attempting to generate a
dump of this type. You might need to generate this type of dump file while running a write filter. If you

http://go.microsoft.com/fwlink/?LinkId=690061
http://go.microsoft.com/fwlink/?LinkId=690062
http://go.microsoft.com/fwlink/?LinkID=690061&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=690208
http://go.microsoft.com/fwlink/?LinkId=690063

32

do not want to download the file using a cable connection, provide another drive partition that is not
protected. Specify that the dump file and page file should be located on that unprotected partition. As
an alternative, you can specify what is known as a dedicated dump file location; learn more at
http://go.microsoft.com/fwlink/?LinkId=690064.

You must create the CrashOnCtrlScroll registry entry on the Windows 7-based computer for this feature
to work. To enable the feature on a computer that uses a USB keyboard, follow these steps:

1. Start Registry Editor.

2. Locate and then click the following registry subkey:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\kbdhid\Parameters

3. On the Edit menu, click Add Value, and then add the following registry entries:

 Name: CrashOnCtrlScroll

 Data Type: REG_DWORD

 Value: 1

4. Exit Registry Editor.

5. Restart the computer.

Important On a computer that uses a USB keyboard, you do not have to restart the
computer. Unplugging the keyboard and plugging it back again is sufficient. After that, the
memory dump file can be generated.

Note The keyboard operation will generate a memory dump file and a Stop E2 error.

To read more about configuring the keyboard registry keys, go to
http://go.microsoft.com/fwlink/?LinkId=690065.

If you do not have access to the system locally, but need to generate a failure, consider using PsExec to
trigger NotMyFault on a remote system. This is useful in a lab situation where systems might not have
physical keyboards or displays attached.

Before you upload or share any of the dump files, compress them into a Zip file. Compression can
generally reduce the file size by almost a factor of ten and save you a significant amount of upload time.

Visual Studio

As was mentioned earlier, you should not install a full copy of Visual Studio on an embedded Windows
client system. However, you can use Visual Studio and remote debugging to debug a process while it is
running on a client system. To learn how to set up your environment and Visual Studio 2013 for this
remote debugging process, go to http://go.microsoft.com/fwlink/?LinkId=690067.

Troubleshooting

When you encounter an issue on an embedded system, attempt to reproduce the problem on the
desktop equivalent OS. We discussed installing your embedded system on the desktop OS equivalent in
the Hardware Validation section. Plug the hard disk that contains the full desktop OS installation into the
embedded system. Configure the desktop OS equivalent installation in the same way as the embedded
OS, and see if you the problem appears. If you do see the issue, look for a solution for the Windows
issue or bug that is causing the problem. If you cannot find a resolution on your own, contact Microsoft
for support for that desktop version. If you cannot reproduce the issue on the desktop OS version, you
might be missing a required or optional component in your current OS configuration.

http://go.microsoft.com/fwlink/?LinkId=690064
http://go.microsoft.com/fwlink/?LinkId=690065
http://go.microsoft.com/fwlink/?LinkId=690066
http://go.microsoft.com/fwlink/?LinkId=690067

33

Common Windows Embedded Issues

POSReady 2009/WePOS 1.1/POSReady 7

Earlier, we mentioned that FBWF and the Registry Filter are present in the POSReady versions. If you are
not using them, it is probably safer to deactivate them than leave them running. They are found in the
following registry location, and the value of 4 sets them to disabled so they will not start:

 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Regfilter]

 "Start"=dword:00000004 // = disabled

 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\FBWF]

 "Start"=dword:00000004 // = disabled

These registry key locations should be the same on newer versions, such as POSReady 7.

Windows 7

The issues discussed in this section may also pertain to WES 7, Thin-PC, and POSReady 7 systems. In all
these versions, in Control Panel > Programs and Features, the section for Turn Windows Features On or
Off will always be blank. This is by design for these embedded products. You can use DISM/Add-Package
commands online or offline to add or remove additional features or drivers for an existing image.

There are a few differences between Windows 7 and the embedded versions regarding power settings.
Additionally, only certain user accounts have access to or can persist new power plan settings. First, an
administrator can change some security descriptors to allow local users to modify the power settings on
the embedded system. To make this change, use an administrator account to execute the following
command from a command prompt on the device after the image has been deployed:

powercfg -setsecuritydescriptor actiondefault

O:BAG:SYD:P(A;CI;KRKW;;;BU)(A;CI;KA;;;BA)(A;CI;KA;;;SY)(A;CI;KA;;;CO)

Second, there is a difference in the default Balanced power settings for the AcSettingIndex value on the
embedded system. This registry value defines the point at which the CPU will accelerate to high
performance. On WES 7/POSReady 7, the default value is 90%, but on Windows 7, the default is 60% of
CPU utilization. Because of this difference, you might observe performance differences when running
applications on embedded systems out of the box. You can change the registry key so it contains a value
of 60 instead of 90. Alternatively, you can select the High Performance power scheme instead of the
Balanced. You can modify the following registry key for the Balanced power scheme:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\PowerSetting

s\54533251-82be-4824-96c1-47b60b740d00\06cadf0e-64ed-448a-8927-

ce7bf90eb35d\DefaultPowerSchemeValues\381b4222-f694-41f0-9685-

ff5bb260df2e\AcSettingIndex

Process Monitor

When you suspect that you might be missing an OS component or dependency, one of the best options
is to use Process Monitor. It is a free utility that, once installed, can fully monitor all file and registry
accesses on your system. It can capture quite a lot of information in a very short time. With some
practice and learning how to filter the log, you can view only the processes in which you are interested.
Once filtered correctly, it should be easy to identify the file or registry key that is missing or might have
different permissions.

34

If you are having trouble identifying where the error occurs, conduct an A vs. B comparison. To do so,
capture a log of a similar run of the application on a system that does not have the problem. This might
mean obtaining a capture from a desktop version while comparing it to your embedded system. To
download a copy of Process Monitor, go to http://go.microsoft.com/fwlink/?LinkId=690068.

System Updates (WU, WSUS, WEDU, SCCM)

Once your system is deployed to the field, you might want it to receive periodic updates for functionality
and security. The need for updates will depend on how and where the system is being used. If you
create a stand-alone information kiosk that never connects to a network, updates might not be needed
as regularly. For a device that operates on a network or as part of an enterprise domain, regular security
updates are very important for the system and overall network security.

Your OS design, or use of a write filter, can complicate the process for applying updates to the system
when compared with a normal desktop client. If an update is installed on a partition that is protected by
a write filter, on the next reboot, that update is lost. For this reason, you must first disable the write
filters protecting any system partitions before applying updates. You can also set the write filters to
servicing mode before applying updates.

There was a small utility service known as Device Update Agent included in the Windows XP Embedded-
based products. OEMs could use it for deploying custom update packages. However, there are several
available alternatives, and Device Update Agent is not widely used anymore.

System updates are designed to keep a backup copy of the binaries that are updated so users can
uninstall them if a problem occurs. On a regular desktop system with hundreds of GB of drive space, this
is not an issue. If you deploy a 4 GB OS image to an 8 GB drive, you might easily experience drive bloat
from system updates over time. At some point, you will no longer have any free space. This could
happen in only a year or two of updates. Because of this fact, we recommend that you ship with a
minimum of double your image size in free space. However, three or four times your image size would
be ideal for a higher safety margin. For example, if your image is 4 GB, shipping on a 12 or 16 GB drive
would be a good option. If your image is 8 GB, consider a minimum of 16 GB or use a 32 GB drive. You
can run disk cleanup on some versions to delete intermediate versions of the updates. You will still have
at least one duplicate version of every updated binary still present.

Windows Update (WU)

All versions of Windows Embedded, except XP Embedded SP3 and WES 2009, can include Windows
Update (WU). With WU, if they are on a network with access to the Internet, they can download
updates directly from Microsoft. If no write filter is present, then this process is almost identical to a
desktop Thin Client. If you are using a write filter, some customization is required to make this work
properly. This customization might include some scheduled tasks to disable the write filter and reboot
the system before downloading and applying any updates. In some versions, such as XP and Windows 7,
the WU component is optional. However, in all versions, you can set the WU service to be disabled once
the system is deployed if needed.

WU and Windows Server Update Service (WSUS) will detect and install updates for Windows desktop
components and any installed versions of the .NET Framework(s). However, that is not true for
embedded clients. The only version of .NET that will be detected and automatically installed is the
version that shipped in-box with the product. For WES 7, that means WU will detect and apply updates
for .NET 3.5 SP1. If you have installed .NET 4.0 or 4.x, those updates will not be detected for you. To help

http://go.microsoft.com/fwlink/?LinkId=690068
http://go.microsoft.com/fwlink/?LinkId=690069

35

OEMs determine if .NET updates are needed for an embedded client, Microsoft has created a
spreadsheet.

Another limitation of Windows Update is that it will not detect or update any of the EEFs/Lockdown
features present in the image. For that, you must use Windows Embedded Developer Update (WEDU) to
install those updates when you build the image. You can also download each individually from MyOEM
or Download Center.

Windows Server Update Service (WSUS)

Some enterprises might not want to connect their systems directly to the Internet. In those cases, an
enterprise might plan a more scheduled deployment of its own once updates become available. You can
use WSUS to deploy the same update packages you would download directly from WU to the client.
WSUS can also create some level of custom deployment scripts for third-party packages if needed. This
is useful if you are deploying an OOB component (such as an updated version of Internet Explorer) or
your own custom application. For Volume License customers, you will find OOBs for some of the
POSReady clients by going to http://go.microsoft.com/fwlink/?LinkID=671707&clcid=0x409.

There is a free tool you can use to author a package for deployment using WSUS; go to
http://wsuspackagepublisher.codeplex.com/.

System Center Configuration Manager (SCCM)

System Center Configuration Manager allows you to install a small client on your embedded systems
that allows you to deploy custom, scripted updates as needed. The first version capable of supporting
embedded clients was SCCM 2007 SP2 using an add-in called Windows Embedded Device Manager 2011
SP1. This SSCM version allowed customers to manage embedded clients that were based on XP and all
the other versions up to and including Windows 7. Most customers are now running System Center
Configuration Manager 2012 R2 SP1. As of the R2 version, SCCM added support for Windows 8 and 8.1-
based embedded clients.

If you plan to use SCCM to manage your devices, there are exclusions a configuration manager client
needs when using FBWF or UWF. To learn more, go to http://go.microsoft.com/fwlink/?LinkId=690070.

There is also a utility to help create update packages. To download the utility, go to
http://go.microsoft.com/fwlink/?LinkId=690071.

Windows Embedded Developer Update (WEDU)

Windows Embedded Developer Update must be installed on the development system where you have
installed ICE for building your images. WEDU can detect and download updates for you so they are
added to the distribution shares present on your development system. WEDU downloads regular
Windows updates and updates for the EEFs or Lockdown features as well.

Resources
This paper has tried to discuss several introductory topics and provides a good start. However, it is not
comprehensive enough to replace the product documentation or training that exists. In this section, we
will discuss some of the options for additional information or ways to get support when developing a
new product.

http://go.microsoft.com/fwlink/?LinkId=690209
http://go.microsoft.com/fwlink/?LinkID=671707&clcid=0x409
http://wsuspackagepublisher.codeplex.com/
http://go.microsoft.com/fwlink/?LinkId=690070
http://go.microsoft.com/fwlink/?LinkId=690071

36

Microsoft Developer Support

If you need help with a problem you encountered during development of a Windows embedded system,
you have a few options available to you. It is important to determine the exact type of support you
need. For example, if you are having a problem with an application, consider requesting support with
Visual Studio and your development language (C++, C#, Visual Basic, etc.). If you are developing a
custom device driver, request support from the Windows Driver Kit SDK support team. As a reminder,
first develop and test on the desktop equivalent version OS to ensure everything works correctly before
testing on an embedded client.

For general support issues, go to http://go.microsoft.com/fwlink/?LinkId=690072.

For Windows embedded OEM support, which is generally handled by Developer Support, you have
several options. To learn about these options, go to http://go.microsoft.com/fwlink/?LinkId=690073.
This site includes links to search the Knowledge Base and the forums, view developer documentation, or
contact Microsoft for additional help.

If you need to open a support request with Microsoft, there are a few options available to you. The first
is to open a paid incident request; you pay a fixed cost on your credit card. To start that process, simply
type the name of the product you want support with on the follow page:
http://go.microsoft.com/fwlink/?LinkId=690074.

An MSDN subscription is a second option for requesting help. The subscription might include a certain
number of support incidents per year. To learn more about the benefits available to MSDN subscribers,
go to http://go.microsoft.com/fwlink/?LinkId=690075.

Finally, a Premier Support contract with Microsoft is another option. If your company has an unexpired
Premier Support contract, you can contact your Technical Account Manager (TAM). The TAM will assist
you with creating a support case. To learn more about this option, go to
http://go.microsoft.com/fwlink/?LinkId=690076.

As the OEM who develops and sells an embedded image, the expectation is that you will provide
support to your customers for any issues they encounter. Microsoft does not directly support end users
of embedded systems. If they contact Microsoft, they will be directed back to their OEM for assistance.
Volume License customers that are using an OS like POSReady 7 can contact and work directly with
Microsoft because there is no OEM involved.

Training

If you want more in-depth training on how to develop and configure a particular version of Windows
embedded, there are a few options available. If you have a Premier Support agreement, work with your
TAM to arrange for Microsoft to deliver a two-day training session or hands-on lab. Alternatively, you
can contact your Embedded License Distributor to discover if they offer training. The distributor may be
able to arrange training with a Microsoft representative at its facilities.

Documentation

Each Windows embedded toolkit includes documentation. In addition, the Microsoft Developer Network
(MSDN) offers documentation for all versions of the embedded products that have been released. The
following is a list of a few of the available sites:

 Windows Embedded Standard: http://go.microsoft.com/fwlink/?LinkId=690077.

 WePOS/POSReady: http://go.microsoft.com/fwlink/?LinkId=690078.

http://go.microsoft.com/fwlink/?LinkId=690072
http://go.microsoft.com/fwlink/?LinkId=690073
http://go.microsoft.com/fwlink/?LinkId=690074
http://go.microsoft.com/fwlink/?LinkId=690075
http://go.microsoft.com/fwlink/?LinkId=690076
http://go.microsoft.com/fwlink/?LinkId=690077
http://go.microsoft.com/fwlink/?LinkId=690078

37

 Windows Embedded 8.1 Industry: http://go.microsoft.com/fwlink/?LinkId=690079.

There is also a very good Windows Embedded Standard 2009 resource kit that discusses development
with that product. A majority of what is discussed there is also applicable to Windows XP Embedded
development as well. Some concepts are also applicable to newer versions.

Some third-party authors have also written books discussing how to configure and use Windows
Embedded. If you require more documentation than what Microsoft currently provides, consider
purchasing a book that discusses your target Windows Embedded version.

Conclusion
A variety of approaches and options exist when creating an embedded device. We hope that this paper
has served as a good introduction to what Microsoft has to offer in the embedded space. With other
systems, you might need to learn a whole new process or development approach. With Windows
Embedded, you can continue to utilize your existing knowledge of Windows and Win32 development.
Hopefully, you now have a clear idea of the available versions, the Embedded Enabling/Lockdown
features, and how best to use them to your benefit in your system design.

Good luck in creating your new embedded device that will help to improve the lives of your customers.

http://go.microsoft.com/fwlink/?LinkId=690079
http://go.microsoft.com/fwlink/?LinkId=690080

